Complex number
The complex numbers are an extension of the real numbers, in which all nonconstant polynomials have roots. The complex numbers contain a number i, the imaginary unit, with i^{2}= −1, i.e., i is a square root of −1. Every complex number can be represented in the form x + iy, where x and y are real numbers called the real part and the imaginary part of the complex number respectively.The sum and product of two complex numbers are:
History
The earliest fleeting reference to square roots of negative numbers occurred in the work of the Greek mathematician and inventor Heron of Alexandria in the 1st century AD, when he considered the volume of an impossible frustum of a pyramid. They became more prominent when in the 16th century closed formulas for the roots of third and fourth degree polynomials were discovered by Italian mathematicians (see Tartaglia, Cardano). It was soon realized that these formulas, even if one was only interested in real solutions, sometimes required the manipulation of square roots of negative numbers. This was doubly unsettling since not even negative numbers were considered to be on firm ground at the time. The term "imaginary" for these quantities was coined by René Descartes in the 17th century and was meant to be derogatory. (See imaginary number for a discussion of the "reality" of complex numbers.) The 18th century saw the labors of Abraham de Moivre and Leonhard Euler. To De Moivre is due (1730) the wellknown formula which bears his name, de Moivre's formula:
 .
Wessel's memoir appeared in the Proceedings of the Copenhagen Academy for 1799, and is exceedingly clear and complete, even in comparison with modern works. He also considers the sphere, and gives a quaternion theory from which he develops a complete spherical trigonometry. In 1804 the Abbé Buée independently came upon the same idea which Wallis had suggested, that should represent a unit line, and its negative, perpendicular to the real axis. Buée's paper was not published until 1806, in which year JeanRobert Argand also issued a pamphlet on the same subject. It is to Argand's essay that the scientific foundation for the graphic representation of complex numbers is now generally referred. Nevertheless, in 1831 Gauss found the theory quite unknown, and in 1832 published his chief memoir on the subject, thus bringing it prominently before the mathematical world. Mention should also be made of an excellent little treatise by Mourey (1828), in which the foundations for the theory of directional numbers are scientifically laid. The general acceptance of the theory is not a little due to the labors of Cauchy and Abel, and especially the latter, who was the first to boldly use complex numbers with a success that is well known.
The common terms used in the theory are chiefly due to the founders. Argand called the direction factor, and the modulus; Cauchy (1828) called the reduced form (l'expression réduite); Gauss used for , introduced the term complex number for , and called the norm.
The expression direction coefficient, often used for , is due to Hankel (1867), and absolute value, for modulus, is due to Weierstrass.
Following Cauchy and Gauss have come a number of contributors of high rank, of whom the following may be especially mentioned: Kummer (1844), Kronecker (1845), Scheffler (1845, 1851, 1880), Bellavitis (1835, 1852), Peacock (1845), and De Morgan (1849). Möbius must also be mentioned for his numerous memoirs on the geometric applications of complex numbers, and Dirichlet for the expansion of the theory to include primes, congruences, reciprocity, etc., as in the case of real numbers.
Other types have been studied, besides the familiar , in which is the root of . Thus Eisenstein has studied the type , being a complex root of . Similarly, complex types have been derived from ( prime). This generalization is largely due to Kummer, to whom is also due the theory of Ideal numbers, which has recently been simplified by Klein (1893) from the point of view of geometry. A further complex theory is due to Galois, the basis being the imaginary roots of an irreducible congruence,
(mod , a prime). The late writers (from 1884) on the general theory include Weierstrass, Schwarz, Dedekind, Hölder, Berloty, Poincaré, Study, and Macfarlane.The formally correct definition using pairs of real numbers was given in the 19th century.
Definition
Formally we may define complex numbers as ordered pairs of real numbers (a, b) together with the operations:
We identify the real number a with the complex number (a, 0), and in this way the field of real numbers R becomes a subfield of C. The imaginary unit i is the complex number (0,1).
In C, we have:
 additive identity ("zero"): (0,0)
 multiplicative identity ("one"): (1,0)
 additive inverse of (a,b): (−a,−b)
 multiplicative inverse of nonzero (a,b):
Geometry
A complex number can also be viewed as a point or a position vector on the two dimensional Cartesian coordinate system. This representation is sometimes called an Argand diagram. In the figure, we have
Multiplication with i corresponds to a counter clockwise rotation by 90 degrees. The geometric content of the equation i^{2} = 1 is that a sequence of two 90 degree rotation results in a 180 degree rotation. Even the fact (1) · (1) = +1 from arithmetic can be understood geometrically as the combination of two 180 degree turns.
Absolute value, conjugation and distance
Recall that the absolute value (or modulus or magnitude) of a complex number z = r e^{iφ} is defined as z = r. Algebraically, if z = a + ib, then z = &radic(a² + b² ).
One can check readily that the absolute value has three important properties:
The complex conjugate of the complex number z = a + ib is defined to be a  ib, written as or z^{*}. As seen in the figure, is the "reflection" of z about the real axis. The following can be checked:




 if and only if z is real


 if z is nonzero
That conjugate commutes with all the algebraic operations (and many functions; e.g. ) is rooted in the ambiguity in choice of i (1 has two square roots); note, however, that conjugate is not differentiable (see holomorphic).
The complex argument of z=re^{iφ} is φ. Note that the complex argument is unique modulo 2π.
Matrix representation of complex numbers
While usually not useful, alternative representations of complex field can give some insight into their nature. One particularly elegant representation interprets every complex number as 2×2 matrix with real entries which stretches and rotates the points of the plane. Every such matrix has the form
The absolute value of a complex number expressed as a matrix is equal to the square root of the determinant of that matrix. If the matrix is viewed as a transformation of a plane, then the transformation rotates points through an angle equal to the argument of the complex number and scales by a factor equal to the complex number's absolute value. The conjugate of the complex number z corresponds to the transformation which rotates through the same angle as z but in the opposite direction, and scales in the same manner as z; this can be described by the transpose of the matrix corresponding to z.
Some properties
Real vector space
C is a twodimensional real vector space. Unlike the reals, complex numbers cannot be ordered in any way that is compatible with its arithmetic operations: C cannot be turned into an ordered field.
Solutions of polynomial equations
A root of the polynomial p is a complex number z such that p(z) = 0. A most striking result is that all polynomials of degree n with real or complex coefficients have exactly n complex roots (counting multiple roots according to their multiplicity). This is known as the Fundamental Theorem of Algebra, and shows that the complex numbers are an algebraically closed field.
Indeed, the complex number field is the algebraic closure of the real number field. It can be identified as the quotient ring of the polynomial ring R[X] by the ideal generated by the polynomial X^{2} + 1:
Algebraic characterization
The field C is (up to field isomorphism) characterized by the following three facts:
 its characteristic is 0
 its transcendence degree over the prime field is the cardinality of the continuum
 it is algebraically closed
Complex analysis
The study of functions of a complex variable is known as complex analysis and has enormous practical use in applied mathematics as well as in other branches of mathematics. Often, the most natural proofs for statements in real analysis or even number theory employ techniques from complex analysis (see prime number theorem for an example). Unlike real functions which are commonly represented as two dimensional graphs, complex functions have four dimensional graphs and may usefully be illustrated by color coding a three dimensional graph to suggest four dimensions, or by animating the complex function's dynamic transformation of the complex plane.
Applications
Control theory
In control theory, systems are often transformed from the time domain to the frequency domain using the Laplace transform. The system's poles and zeros are then analyzed in the complex plane. The root locus, nyquist plot, and nichols plot techniques all make use of the complex plane.In the root locus method, it is especially important whether the poles and zeros are in the left or right half planes, i.e. have real part greater than or less than zero. If a system has poles that are
 in the right half plane, it will be unstable,
 all in the left half plane, it will be stable,
 on the imaginary axis, it will be marginally stable.
Signal analysis
Complex numbers are used in signal analysis and other fields as a convenient description for periodically varying signals. The absolute value z is interpreted as the amplitude and the argument arg(z) as the phase of a sine wave of given frequency.If Fourier analysis is employed to write a given realvalued signal as a sum of periodic functions, these periodic functions are often written as the real part of complex valued functions of the form
In electrical engineering, this is done for varying voltages and currentss. The treatment of resistors, capacitors and inductors can then be unified by introducing imaginary frequencydependent resistances for the latter two and combining all three in a single complex number called the impedance. (Electrical engineers and some physicists use the letter j for the imaginary unit since i is typically reserved for varying currents.)
Improper integrals
The residue theorem of complex analysis is often used in applied fields to compute certain improper integrals. See examples of contour integration.Quantum mechanics
The complex number field is also of utmost importance in quantum mechanics since the underlying theory is built on (infinite dimensional) Hilbert spaces over C.
Relativity
In Special and general relativity, some formulas for the metric on spacetime become simpler if one takes the time variable to be imaginary.Applied mathematics
In differential equations, it is common to first find all complex roots r of the characteristic equation of a linear differential equation and then attempt to solve the system in terms of base functions of the form f(t) = e^{rt}.Fluid dynamics
In fluid dynamics, complex functions are used to describe potential flow in 2d.Fractals
Certain fractals employ complex numbers in the plotting of their function, e.g. Mandelbrot set and Lyapunov fractal.See also
quaternions, complex geometry, local fields, phasors, Leonhard Euler, Euler's identity, Hypercomplex number, De Moivre's formula,
Further reading
Topics in mathematics related to quantity  Edit 
Numbers  Natural numbers  Integers  Rational numbers  Real numbers  Complex numbers  Hypercomplex numbers  Quaternions  Octonions  Sedenions  Hyperreal numbers  Surreal numbers  Ordinal numbers  Cardinal numbers  padic numberss  Integer sequences  Mathematical constants  Infinity  
Topics in mathematics related to spaces  Edit 
Topology  Geometry  Trigonometry  Algebraic geometry  Differential geometry and topology  Algebraic topology  Linear algebra  Fractal geometry  Compact space 