The Law of sines reference article from the English Wikipedia on 24-Jul-2004
(provided by Fixed Reference: snapshots of Wikipedia from

Law of sines

Videos from a children's charity on sponsorship
In trigonometry, the law of sines (or sine law) is a statement about arbitrary triangles in the plane. If the sides of the triangle are (lower-case) a, b and c and the angles opposite those sides are (capital) A, B and C, then the law of sines states

This formula is useful to compute the remaining sides of a triangle if two angles and a side is known, a common problem in the technique of triangulation. It can also be used when two sides and one of the non-enclosed angles are known; in this case, the formula may give two possible values for the enclosed angle. When this happens, often only one result will cause all angles to be less than 180°; in other cases, there are two valid solutions to the triangle.

The reciprocal of the number described by the sine law (i.e. a/sin(A)) is equal to the diameter D of the triangle's circumcircle (the unique circle through the three points A, B and C). The law can therefore be written


Image:Law of sines proof.png
Make a triangle with sides a, b, and c, and opposite angles A, B, and C. Make a line from the angle C to the opposite side c that cuts the original triangle into two right triangles, and call the length of this line h. Therefore:

Doing the same thing with angle A and side a will yield:

See also